Популярные Нано Технологии

Кадры

Фотогалерея

Новости

Ученые ИЯФ СО РАН создали уникальный вигглер для европейских исследователей / 04.05.2016

Источник: Popnano.RU

 
Ученые Института ядерной физики имени Г.И. Будкера СО РАН (ИЯФ СО РАН) разработали и изготовили для Технологического института Карлсруэ (Karlsruher Institut für Technologie, KIT, Германия) и ЦЕРН (European Organization for Nuclear Research, CERN, Швейцария) уникальный сверхпроводящий вигглер — устройство, предназначенное для генерации синхротронного излучения. 
Об этом стало известно 4 мая 2016 г.
 
На фотографии сотрудники ИЯФ СО РАН производят финальную сборку вигглера после доставки в г Карслруэ, Германия.
 
Его уникальность — в использовании нового, более практичного способа охлаждения — без погружения магнита в жидкий гелий. Сейчас новосибирская разработка, стоимость которой составляет около 1 млн евро, установлена на ускорительном комплексе ANKA в Германии. Здесь с ее помощью будут проводиться эксперименты с биологическими объектами, а для исследователей из ЦЕРН вигглер станет испытательным полигоном по отработке технологий для разрабатываемого линейного коллайдера CLIC.
 
Вигглер — устройство для генерации синхротронного излучения (СИ), то есть излучения, производимого электронами при движении в магнитном поле.
Принцип работы вигглера основан на создании на пути частицы знакопеременного магнитного поля, которое формирует зигзагообразную траекторию движения электронов.
Двигаясь «змейкой», электроны излучают СИ. Использование в вигглерах сверхпроводящих электромагнитов позволяет избежать потерь на нагрев обмоток электрическим током. Кроме того, за счет сверхпроводимости можно получать существенно более высокие магнитные поля, чем в обычных магнитных системах, а, следовательно, и более интенсивное СИ.
 
В качестве сверхпроводящего материала при создании вигглера используется ниобий — титановый сплав, который при охлаждении до криогенных температур — порядка нескольких градусов Кельвина, переходит в сверхпроводящее состояние.
Поэтому обычно для получения и поддержания необходимой температуры сверхпроводящие магниты погружаются в сосуд с жидким гелием. Сотрудники ИЯФ СО РАН реализовали принципиально новую систему охлаждения.
 
Установка вигглера на накопитель ANKA
 
«Представьте, — рассказывает кандидат технических наук, старший научный сотрудник ИЯФ СО РАН В. Шкаруба, — в помещении комнатная температура, а внутри установки она должна быть примерно на 300о меньше, то есть 4 К (– 269 C). Для теплоизоляции магнита используется специальное устройство — криостат, в который обычно заливается жидкий гелий, чтобы поддерживать низкую температуру.
 
Если внутри такого криостата что-то сломалось, приходится полностью разрезать герметичный сосуд, доставать магнит, а затем опять использовать сварку. Мы же сделали вигглер с криостатом нового типа, в котором магнит не погружен в жидкий гелий. Охлаждение производится специальными криорефрежираторами через систему тепловых контактов. В нашем случае нужно просто нажать кнопку, и через несколько дней магнит, охладившись до нужной температуры, сможет работать в этом режиме годами». 
 
Руководитель Лаборатории технологий сверхпроводящих ондуляторов Технологического института Карлсруэ А. Бернхард (Dr. Axel Bernhard) рассказал, что вигглер будет использоваться в качестве источника излучения для рентгеноскопического канала на источнике СИ ANKA. «Он обеспечит яркие жесткие рентгеновские лучи для микроскопа MiQA, который будет применяться в материаловедении и науках о жизни», — пояснил А. Бернхард.
 
Вигглеры могут использоваться не только как генераторы СИ для фундаментальных и прикладных исследований в химии, биологии, материаловедении. Их применяют в накопителях заряженных частиц для уменьшения размеров и повышения интенсивности сгустков.
 
Новая разработка ИЯФ СО РАН станет прототипом вигглера для затухательных колец разрабатываемого в ЦЕРН линейного коллайдера CLIC. Прежде чем принять решение о строительстве нового масштабного ускорителя, который по своим размерам будет превосходить Большой адронный коллайдер, специалисты ЦЕРН отрабатывают необходимые критические технологии.
 
Коллектив заказчиков и исполнителей
 
«Таких вигглеров, — комментирует кандидат физико-математических наук, заведующий научно-исследовательским сектором ИЯФ СО РАН К. Золотарев, — в проектируемом ускорительном комплексе должно быть около 100. Прежде чем запускать пучки электронов и позитронов в сам линейный ускоритель, нужно сжать их, увеличив плотность. Подготовка таких пучков осуществляется в специальных затухательных кольцах. Каждое из них состоит из 2х полуколец, между которыми находятся длинные прямолинейные промежутки с вигглерами. Проходя через них, отдельные частицы сгустка излучают, уменьшается их поперечный импульс и фазовый объем сгустка, и увеличивается плотность пучка. Делать вигглеры по обычной схеме в данном случае было бы очень ненадежно, а новая конструкция криостата обеспечивает возможность быстрого доступа к элементам магнитной системы, позволяет сократить время ремонтных работ и технического обслуживания. Кроме того, ЦЕРН планирует испытать в нашем криостате другие варианты магнитных систем».
 
Европейские ученые уже приступили к работе с вигглером. «Мы начали с базовых экспериментов по проверке работоспособности и надежности всей системы, — комментирует А. Бернхард, — в частности, криогенной. В затухательных кольцах CLIC будет напряженный режим работы для сверхпроводящих магнитов. В наших первых тестах вигглер оказался очень надежным. В настоящее время мы готовимся к экспериментам по изучению влияния вигглера на динамику пучков в накопителе ANKA. Рентгеновский микроскоп планируем ввести в эксплуатацию во второй половине 2016 г».

Другие новости по теме:
02.02.18 - Российские ученые выпустят версию 1.0 симулятора гидроразрыва пласта в конце 2018 г
10.10.17 - Российские учетные могут разработать для Газпрома новую технологию хранения газа с использованием нанопористого графена
13.09.17 - Поможет энергия океана: ученые УрФУ создают мобильную электростанцию
21.04.17 - Нейроинтерфейсы могут стать реальностью уже через 8-10 лет
06.02.17 - Телескоп Хаббл запечатлел зарождение новой туманности
TOP100 самых популярных
новостей
за месяц
Место Наименование Показов

Авторизация

логин
пароль
Регистрация Забыли пароль?

Реклама нефтегаз

Анонсы событий