Популярные Нано Технологии

Размещение материала

Для размещения материала в данном разделе заполните пожалуйста эту форму.

Кадры

Фотогалерея

НИОКР

Нанокристаллические структуры - новое направление развития конструкционных материалов / 03.09.2009

© Академик Н.П. Лякишев

Источник: Vivovoco.rsl.ru

Основную часть конструкционных материалов составляют металлические, керамические, полимерные и композиционные. Выбор для их применения в конструкциях определяется соотношением между прочностью и пластичностью. Металлические материалы обладают наилучшим таким соотношением [1]. Керамические и полимерные материалы менее пластичны, нежели металлические, а композиционные по указанным характеристикам занимают промежуточное положение между керамическими и металлическими материалами. Оптимальное соотношение между прочностью и пластичностью металлических материалов определило их превалирующую долю в общем объеме конструкционных материалов, которая превышает 90%. Мировое производство стали непрерывно возрастало и к концу XX в. достигло 800 млн. т в год [2]. Некоторое замедление темпов роста в значительной мере связано с удовлетворением потребности за счет повышения качества сталей (табл. 1). К настоящему времени в России разработано и используется около 2000 марок сталей и выпускается более 15 млн. вариантов исполнения металлопродукции, включающих металлы массового назначения (стали, алюминиевые сплавы, титановые сплавы и др.), высокопрочные стали и сплавы, жаропрочные сплавы, хладостойкие стали, коррозионностойкие стали и сплавы, износостойкие стали, радиационностойкие стали и сплавы, литейные чугуны и др.

Прирост прочностных свойств конструкционных материалов за последние десятилетия был обусловлен в основном разработкой сплавов с новым химическим и фазовым составом. В последние годы наметились новые пути повышения свойств конструкционных материалов за счет целенаправленного формирования микро- и нано-кристаллической структуры.

Химический и фазовый состав, форма, размеры и другие характеристики кристаллитов и границ раздела оказывают определяющее влияние на свойства материалов. Наноматериалы можно классифицировать по химическому составу, форме кристаллитов и расположению границ раздела (табл. 2) [3]. По этим параметрам они делятся на слоистые, волокнистые и равноосные, для которых соответственно толщина слоя, диаметр волокна или зерна меньше некоторого значения, например 100 нм. По химическому составу кристаллитов можно выделить четыре группы нано-материалов. Для наиболее простого варианта химический состав кристаллитов и границ раздела одинаков - это, например, слоистые поликристаллические полимеры или чистые металлы с нанокристаллической равноосной структурой. Вторая группа представляет наноструктурные материалы с кристаллитами различного химического состава, в частности, многослойные структуры. Для материалов третьей группы химический состав зерен и границ раздела различен. Материалы, в которых наноразмерные компоненты структуры (слои, волокна или равноосные кристаллиты) диспергированы в матрице сплава другого химического состава, составляют четвертую группу.

Многообразие методов порошковой металлургии - компактирование нанопорошков, интенсивная пластическая деформация и кристаллизация из аморфного состояния - обеспечивает широкие возможности для получения наноматериалов. На уплотнение дисперсных порошков значительное влияние оказывают такие параметры, как средний размер частиц, содержание примесей, состояние поверхности, форма частиц и способ прессования. Для прессования нанопорошков широко применяют одноосное прессование: статическое (в пресс-формах, штамповка), динамическое (магнитно-импульсное, взрывное) и вибрационное (ультразвуковое).

Читать далее

Авторизация

логин
пароль
Регистрация Забыли пароль?

Реклама нефтегаз

Анонсы событий