ПОПУЛЯРНЫЕ НАНОТЕХНОЛОГИИ

Кадры

Фотогалерея

Новости

Энергетическое сомообеспечение / 18.05.2022

 

Ученые изобрели топливный элемент для производства электроэнергии, работающий на сахаре, содержащимся в человеческом организме

С помощью специально разработанного топливного элемента глюкоза может быть преобразована для питания медицинских имплантатов, для которых сегодня требуется аккумулятор. Речь идет о глюкозе. Это сахар, который люди получают вместе с пищей. Ученые посчитали, что раз сахар снабжает энергией наш организм, то почему не может производить энергию для чего-то еще.

Преобразуя его непосредственно в электричество, он может, например, питать медицинские имплантаты, такие, как кардиостимуляторы. Команда ученых из Массачусетского технологического института (MIT) и Технического университета Мюнхена разработала удивительное устройство. 

"Глюкоза находится в организме повсюду, и идея заключается в том, чтобы собрать эту легкодоступную энергию и использовать ее для питания имплантируемых устройств", — объясняет Филипп Симонс, который разработал прототип в рамках своей докторской диссертации на факультете материаловедения и инженерии Массачусетского технологического института. "В нашей работе мы показываем новую электрохимию глюкозных топливных элементов". Говоря конкретнее, это топливный элемент, который может преобразовывать глюкозу в небольшое количество электроэнергии. При толщине 400 нанометров, что составляет одну сотую диаметра человеческого волоса, он способен вырабатывать 43 микроватта на квадратный сантиметр, что, по словам ученых, является самой высокой плотностью, когда-либо испытанной на подобных устройствах. Батарея также может выдерживать температуру 600 °C: эта характеристика необходима для прохождения процесса стерилизации, необходимого для введения имплантатов в человеческое тело. Преобразование электроэнергии происходит напрямую, без необходимости хранить ее в аккумуляторе, что экономит много места.

 

"Вместо использования батареи, которая может занимать 90% объема имплантата, можно создать устройство с тонкой пленкой, и вы получите источник питания без объемного следа", — объясняет Дженнифер Л.М. Рупп, исследователь из Мюнхенского технического университета в Германии, в релизе MIT. Команда планирует создать очень тонкие пленки, которые можно будет обернуть вокруг имплантатов или использовать в качестве покрытия для пассивного питания. "Топливные элементы преобразуют энергию напрямую, а не хранят ее в устройстве, поэтому вам не нужен весь этот объем для хранения энергии в батарее", — добавляет он.

 

Идея, которая существует с 1960-х годов. Идея использования глюкозы в качестве источника электроэнергии не является абсолютно новой, поскольку прототипы были созданы в 1960-х годах, напоминает MIT. Однако в качестве основного материала использовался полимер, который не отличается высокой термостойкостью. Его свойства также трудно сохранить неизменными в наномасштабе, поэтому этот тип генераторов был быстро вытеснен литий-йодидными батареями. Поэтому на этот раз ученые выбрали керамику, которая способна сохранять свои электрохимические свойства даже при очень высоких температурах.


Основная работа этого "преобразователя глюкозы" заключается в следующем. Топливный элемент состоит из верхнего анода (положительного полюса), центрального электролита (проводящего вещества) и нижнего катода (отрицательного полюса). Анод реагирует с глюкозой, присутствующей в жидкостях организма, преобразуя сахар в глюконовую кислоту. При этом электрохимическом преобразовании высвобождается пара протонов и пара электронов. Промежуточный электролит отделяет протоны от электронов, прогоняя их через топливный элемент, где они соединяются с воздухом и образуют молекулы воды. Эта вода уходит вместе с жидкостями организма. Изолированные электроны поступают во внешнюю цепь, где они могут быть использованы для питания электронного устройства. Это слой электролита, который часто изготавливается из полимеров. Недавние исследования ученых, заменивших его на керамику, оказались успешными.

 

"Когда вы думаете о керамике для такого глюкозного топливного элемента, ее преимуществами являются долгосрочная стабильность, малая масштабируемость и возможность интеграции кремниевых чипов", — отмечает Дженнифер Рупп.

 

Поэтому команда поместила в керамический электролит анод и катод из платины - стабильного материала, который легко вступает в реакцию с глюкозой. Они изготовили 150 отдельных топливных элементов, реагирующих на глюкозу, и собрали их на чипе. Затем они нанесли рисунок зарядных элементов на кремниевые "пластины", продемонстрировав, что их устройство может быть объединено с широко используемым полупроводниковым материалом. На данный момент их аккумулятор не был протестирован для питания имплантата. Вместо этого они измерили ток, вырабатываемый каждой клеткой в лаборатории, проведя раствором глюкозы по каждой пластине. Испытания не только прошли успешно, но ученые также утверждают, что удалось достичь самой высокой концентрации электричества, найденной в устройствах такого типа, в количестве, достаточном для имплантации — пишет New-Science.ru


Другие новости по теме:
28.05.22 - Энергия из воздуха для самозаряжающегося аккумулятора
26.05.22 - Приручение ветра: ученые нашли решение для выработки энергии при перенапряжении в сети
20.05.22 - Батарейка из водорослей
10.05.22 - Первые полтора кВт энергии переданы по воздуху
06.05.22 - Кислород и топливо из лунного грунта
TOP100 самых популярных
новостей
за месяц
Место Наименование Показов
1

Глобальная сеть стала частью жизни трети россиян

ВЦИОМ выяснил привязанность россиян к Интернету. Глобальной сетью регулярно пользуются 38 процентов россиян, из которых 23 процента выходят в Интернет ежедневно, а 11 процентов - еженедельно. ВЦИОМ в

52
2

Европейские операторы массово заказывают nano-SIM-карты

Согласно данным Financial Times, европейские операторы массово размещают заказы на nano-SIM-карты. Подобный ажиотаж ресурс связывает с близящимся анонсом следующей версии смартфона iPhone, который, по

50
3

Липких квакш сравнили со скотчем

Ученые обнаружили, что в физическом смысле квакши напоминают липкую ленту: удержаться на наклонной плоскости им помогает минимизация угла между поверхностью и вектором силы. Работа опубликована в журн

48
4

Астрофизики обнаружили пригодную для экстремофилов суперземлю

Европейские астрономы обнаружили суперземлю в зоне, потенциально пригодной для обитания, вокруг звезды Gliese 163 на расстоянии 50 световых лет от Земли. Статья ученых подана в журнал Astronomy and As

43
5

Microsoft инвестирует в Россию 10 млрд рублей

Ведущий в мире разработчик ПО — американская компания Microsoft инвестирует в Россию в течение трех лет 10 млрд рублей (около 300 млн долларов). Об этом заявил на пресс-конференции в Москве глав

42

Анонсы событий