Популярные Нано Технологии

Размещение материала

Для размещения материала в данном разделе заполните пожалуйста эту форму.

Кадры

Фотогалерея

Магнитные наночастицы: проблемы и достижения химического синтеза

Современные методы получения наночастиц магнитных материалов можно разделить на две группы – основанные на получении наночастиц из компактных материалов или же в противоположность, основанные на сборке наночастиц из атомов, ионов, молекул. В сравнении с методами получения магнитных наночастиц по принципу измельчения (испарение-конденсация [159], лазерная абляция [49, 121], дробление компактных материалов в шаровых мельницах [38, 58]), концепция сборки «снизу» располагает большим числом возможностей для контроля над размерами, формой, составом, структурой, процессами самоорганизации и физическими свойствами наночастиц. Удобным инструментом воплощения такого подхода являются методы химического синтеза наночастиц, представляющие собой и сочетающие в себе подходы неорганического, металлорганического и органического синтеза с процессами гетерогенного фазообразования в коллоидных или подобным им системах. Благодаря такой гибкости, химические методы открывают большие возможности для изучения и более глубокого понимания фундаментальных изменений магнетизма в нано- и микромасштабах.

Цель данного обзора состоит в том, чтобы ознакомить читателей с последними достижениями в области химического синтеза магнитных наночастиц, проблемами возникающими в ходе попыток управления структурой, формой, размерами, и физическими свойствами химически приготовленных магнитных наночастиц, а также направлениями поиска путей решения обозначенных проблем с иллюстрациями на конкретных, и наиболее свежих примерах.

Основные методы химического синтеза магнитных наночастиц

Основополагающим принципом химического синтеза наночастиц является инициация химической реакции и последующий контроль над процессами нуклеации и роста образующегося продукта. Понимание сути этих процессов и уровень контроля над ними определяют успешность достижения цели – получения монодисперсных наночастиц с желаемым составом и формой. Исторически сложилось, что первоначальным методом дававшим хороший результат был термический метод синтеза полупроводниковых наночастиц халькогенидов кадмия в координирующих растворителях, разработанный в Массачуссетском Технологическом Институте (MIT) в группе профессора М. Бавенди (Moungi Bawendi) [83, 84]. Предложенный метод основан на реакции алкилпроизводных металлов (Me2Zn, Me2Cd, Me2Hg) с алкилфосфин- или алкилсилилпроизводными халькогенидов (R3P=S, R3P=Se, R3P=Te) в смеси различных триалкилфосфинов и триалкилфосфиноксидов (R3P, R = C8H17, R3P=O) c алкиламинами (например олеиламин) при температурах 150-300 оС в атмосфере аргона. Получение монодисперсных наночастиц разных составов и размеров осуществлялось изменением условий проведения эксперимента. В дальнейшем этот метод получил широкое распространение, и в последние годы были разработаны пути позволяющие обходиться без высокотоксичных и нестабильных на воздухе соединений [66] а также сделаны уверенные шаги к детальному пониманию механизма образования наночастиц [153]. Попытки адаптировать этот метод на синтез магнитных наночастиц увенчались успехом и некоторыми неожиданными результатами. Впрыскиванием толуольного раствора карбонила кобальта (Co2(CO)8) в расплавленный триоктилфосфиноксид при 150 оС были получены наночастицы кобальта примитивной кубической структуры, или ε - кобальта (P 4132, a= 6.09 Е) [32, 133], впрыскиванием раствора карбонила кобальта в о-дихлорбензоле в кипящий (182-190 оС) о-дихлорбензол содержащий олеиновую кислоту и триоктилфосфиноксид были получены дискообразные наночастицы ГЦК-кобальта, в ходе реакции превращавшегося в сфероидальные частицы ε – кобальта [108, 109]. Помимо кобальта по подобной технологии были получены наночастицы никеля [96], железа [18], различных магнитных сплавов – FePt [87], FePd и CoPt [24], CoPt3 [124] и др. Параллельно развивались методы синтеза магнитных наночастиц в водной или водно-органической средах при комнатной температуре или незначительном нагревании. Тут следует выделить два получивших широкое распространение подхода – метод микроэмульсий (обратные мицеллы) и гидролиза (дегидратационное соосаждение).

Наночастицы железа (A) в процессе окисления кислородом превращаются в полые наночастицы оксида железа (F), что предположительно объясняется эффектом Киркендала [18].

 

Анализируя последние литературные данные, а также прослеживая прогресс достигнутый за последние десять-пятнадцать лет, можно сказать что проведение химических реакций в растворах представляет собой один из наиболее удобных путей для получения магнитных наночастиц. Формирование наночастиц достигается путем подбора определенных условий протекания реакции (тип реакции, растворитель, температура) и использованием лигандов и поверхностно-активных веществ, специфически ведущих себя на возникающей границе раздела фаз и полностью или частично ограничивающих дальнейший рост твердой фазы.

В процессе получения наночастиц всегда встает вопрос их стабилизации. Наночастицы размером 1-20 нм обладают высокой поверхностной энергией, и для них трудно подобрать действительно инертную среду [1], поэтому на поверхности каждой наночастицы всегда имеются продукты ее химической модификации, которые существенно влияют на свойства наноматериала. Это особенно важно в случае магнитных наночастиц, модифицированный поверхностный слой которых может иметь совсем иные магнитные характеристики, нежели чем ядро частицы, и взаимодействие внутренних атомов с внешними может приводить к серьезным изменениям в магнитном поведении наночастиц. Зачастую исследователи стремятся стабилизировать наночастицы в процессе их получения, чтобы на выходе иметь продукт, постоянный по своим свойствам. В ходе химического синтеза магнитных наночастиц возможны два общих варианта – получение частиц поверхность которых покрыта поверхностно-активными веществами или специфическими материалу частицы лигандами или же методы где одновременно с приготовлением наночастиц происходит их “жесткая” стабилизация в матрицах. Первый случай хорош тем, что сохраняется возможность оперирования с повехностью наночастиц, например замена лигандов или дальнейшая поверхностная модификация, получение монослоев частиц и т.д., а во втором случае чаще всего имеют дело с наноматериалом, для которого особо важны коллективные свойства наночастиц. Подробнее ознакомиться с методами стабилизации наночастиц в матрицах полимеров, цеолитах, пористых оксидах можно в обзорах [2, 47, 93, 120]. Отдельный интерес представляет класс композиционных материалов представляющий собой смеси наночастиц и органических полимеров, поскольку привлекательные технологически благодаря своей пластичности подобные материалы демонстрируют перспективные электрические, оптические, магнитные и механические свойства [10] обусловленные не только индивидуальными особенностями наночастиц и полимеров, но и взаимодействиями на границе раздела двух различных по своей природе материалов – неорганика/органика в супрамолекулярном масштабе. Конкретным примером может служить стабилизация магнитных наночастиц в матрицах дендримеров или в сферических полимерных образованиях – такие ферритино-подобные структуры находят интенсивное применение в бионанотехнологии [138].

Ниже на конкретных примерах в условных рамках трех экспериментальных подходов – соосаждения, метода микроэмульсий и термолиза будет рассмотрено каким образом в настоящее время осуществляется воспроизводимое приготовление монодисперсных магнитных наночастиц, можно ли и каким образом контролировать форму и структуру получаемых наночастиц, осуществлять их стабилизацию и обеспечивать долгосрочную стабильность.

Для более полной картины состояния дел в мире нанохимии и технологии магнитных наночастиц можно обратиться к следующим обзорам [4, 53, 65, 71, 77, 131, 146, 147].

1. Гидролиз, соосаждение

Магнитные микро- и наночастицы в виде феррожидкостей были известны исследователям примерно с середины 60-х годов [5, 6]. Широкое внимание к ним с точки зрения нанохимии было привлечено, в частности, после работы Рене Массарта посвященной синтезу и стабильности коллоидного магнетита в водных растворах при различных значениях pH[79]. В первую очередь такой всплеск интереса к водным дисперсиям магнетита был вызван перспективой его широкого применения в биологии, диагностике и медицине, из-за его низкой токсичности и высокой намагниченности насыщения, о чем подробнее будет сказано ниже. В работах Массарта коллоидный магнетит был получен путем гидролиза смеси хлоридов железа (II) и (III) в соотношении минимум 1 к 2, с помощью раствора гидроксида аммония, после чего приготавливались стабильные золи в щелочной среде – при помощи гидроксида тетраметиламмония, и в кислой – после воздействия разбавленным раствором хлорной кислоты. Схематически реакцию образования магнетита можно записать так:

FeCl2 + 2FeCl3 + 8NH3·H2O → Fe3O4 + 8NH4Cl + 4H2O

Экспериментальная техника приготовления, как оказалось впоследствии – магнитных наночастиц Fe3O4, настолько проста, что сейчас эксперимент является демонстрационным и включен в некоторые лабораторные практикумы по неорганической химии [15]. Проводя синтез по методике предложенной Массартом с разнообразными модификациями, наночастицы магнетита получают и в настоящее время. Фокусируясь на более деликатных деталях эксперимента, исследователи пытаются подбирать условия таким образом, чтобы получать наночастицы желаемого размера, формы и свойств. В [78] показано, что измененяя концентрацию хлоридов в реакционной смеси от 0.0125 М до 1 М и используя короткое время гидролиза (2-10 минут) после добавления основания, можно получать сфероидальные наночастицы магнетита со средним размером от 4-х до 43-х нм, но с большим распределением по размерам (≈30%) и в случае частиц размером более 20 нм – содержащих примесь гётита (FeO(OH)) в своем составе.

Анонсы событий