Популярные Нано Технологии

Размещение материала

Для размещения материала в данном разделе заполните пожалуйста эту форму.

Кадры

Фотогалерея

НИОКР

Наноструктурированные материалы для современных литиевых источников тока / 04.05.2008

Источник: Нанометр

В 2005 году в журнале Nature Materials был опубликован обзор, посвященный открытию и разработке наноструктурированных материалов для устройств хранения и превращения энергии: литиевых источников тока, топливных элементов и суперконденсаторов.

Особое внимание авторы уделили обсуждению преимуществ и недостатков наноструктрурированных материалов при использовании в таких устройствах. В сжатой и систематизированной форме авторы дают представление о наиболее перспективных достижениях в области применения наноструктурированных материалов в устройствах хранения и превращения энергии и намечают тенденции развития в этой области.

В своей работе авторы разделяют наноматериалы на первичные, размер которых составляет десятки нанометров, и вторичные, размер которых составляет микроны, но которые в свою очередь состоят из нанометровых частиц или доменов. В настоящей заметке мы ограничимся обзором использования наноматериалов для литиевых источников тока.

Литиевые источники тока

Литий-ионные аккумуляторы можно назвать одним из наиболее успешных открытий в области электрохимии материалов. Напомним, что литий-ионный аккумулятор состоит из отрицательного электрода, способного обратимо внедрять ионы лития (обычно это графит) и положительного электрода, также способного к обратимому внедрению ионов лития (обычно это сложный оксид лития, например, LiCoO2). Эти два электрода разделены электролитом, проводящим по ионам лития (например, раствор LiPF6 в смеси этиленкарбоната и диэтилкарбоната). Несмотря на то, что такие аккумуляторы достаточно успешно зарекомендовали себя на современном рынке, при использовании вышеупомянутых материалов электродов и электролита их производительность ограничена. При разработке перезаряжаемых литиевых аккумуляторов нового поколения необходимо учитывать требование возможности их использования не только в электронных товарах широкого потребления, но также в гибридных электромобилях и для хранения экологически чистых видов энергии. Одним из направлений, которое может привести к созданию таких источников тока, является разработка наноматериалов для использования в литий-ионных аккумуляторах.

Электроды

Авторы обзора выделяют несколько потенциальных преимуществ и недостатков использования наноструктурированных электродов в литий-ионных аккумуляторах. Среди преимуществ называют: (1) релаксацию напряжений, возникающих в процессах внедрения/экстракции лития, что приводит к лучшей стабильности при циклировании; (2) протекание новых процессов/реакций, которые невозможны для объемного материала; (3) большую площадь контакта электрод/электролит, что приводит к более высоким скоростям заряда/разряда; (4) короткие диффузионные расстояния для транспорта электронов, что позволяет использовать материалы с низкой электронной проводимостью, и (5) короткие диффузионные расстояния для транспорта ионов лития, что позволяет использовать материалы с низкой проводимостью по Li+. Среди недостатков авторы особо отмечают: (1) увеличение нежелательных процессов взаимодействия между электродом и электролитом из-за увеличения площади поверхности, что приводит к саморазряду, уменьшению количества циклов и более короткому сроку службы; (2) слипание частиц, приводящее к более низким удельным энергиям на единицу объема, и (3) использование более сложных и дорогостоящих методов синтеза по сравнению с материалами, применяемыми в настоящее время.

Материалы для отрицательного электрода (анода)

Многие металлы и полупроводники, например, алюминий, олово и кремний, при взаимодействии с литием в процессе электрохимических реакций образуют сплавы (сплавами авторы называют соединения внедрения лития в матрицу исходного металла или полупроводника), которые характеризуются удельной емкостью, величина которой потенциально гораздо выше по сравнению с графитом. Например, теоретическая удельная емкость сплава лития-кремния для его полностью литированного состава, Li4.4Si, составляет 4200 мАч/г, что значительно превышает значение этой же величины для металлического лития (3600 мАч/г) и тем более графита (372 мАч/г). К сожалению, внедрение такого большого количества лития сопровождается огромным изменением объема в материале-хозяине и в ряде случаев - фазовыми превращениями. Механические деформации, возникающие в процессе внедрения/экстракции лития, приводят к растрескиванию и дроблению материала анода, что является причиной заметной потери емкости после всего лишь нескольких циклов экстракции/внедрения лития.

Среди подходов, ограничивающих побочные эффекты, вызванные структурными изменениями и приводящие к нарушению целостности материалов, авторы выделяют идею образования нанокомпозитного материала, состоящего из активной и неактивной фаз. Идея состоит в непосредственном смешивании двух материалов, один из которых взаимодействует с литием, в то время как другой выступает в роли неактивного ограничивающего каркаса. В таком композитном материале использование наноразмерных металлических кластеров, служащих матрицей для внедрения лития, значительно подавляет возникновение деформаций и, таким образом, улучшает обратимость реакции образования сплава. Применение этой идеи к различным системам, например, стеклам на основе Sn-O или к композитным материалам в системах Sn-Fe-C, Sn-Mn-C и Si-C, продемонстрировало, что такие электроды показывают значительное улучшение электрохимических характеристик при циклировании в литиевых элементах. Так, емкость электродного материала на основе нанокомпозитов Si-C составляет порядка 1000 мАч/г на протяжении более чем 100 циклов экстракции/внедрения лития. Улучшения могут возникать как за счет устранения растрескивания, что приводит к сохранению путей проводимости, так и за счет внедрения в материал электрода проводящих добавок - таких, как углерод. Несомненно, электрохимические характеристики сплавов улучшаются за счет наноструктурирования. Например, тонкие пленки аморфного кремния, осажденные методом напыления на специально загрубленную поверхность медной фольги, обладали практически 100%-ой обратимостью при емкостях выше 3000 мАч/г. Превосходное сохранение емкости при циклировании наблюдали также для кремниевых электродов, полученных в форме одномерных наноструктур (наноколонн), т.к. ограничение размера вносит изменения в процессы деформации частиц и уменьшает трещинообразование.

По мнению авторов обзора, самым большим недостатком первичных наночастиц является возможность протекания побочных процессов при взаимодействии с электролитом, в результате чего заметно сокращается срок службы литий-ионных аккумуляторов, а их практическое использование становится небезопасным (это одна из наиболее важных проблем для литиевых батарей). Однако все вышеперечисленные преимущества наночастиц становятся актуальными только тогда, когда материал отрицательного электрода работает в интервале потенциалов, где электролит стабилен, или, как минимум, не происходит образования блокирующего слоя на границе электрод/электролит. В качестве положительного примера авторы приводят Li4+xTi5O12 (0 < x < 3, 160 мАч/г, 1.6 В относительно Li+(1M)/Li). Для этого соединения не характерно образование блокирующего поверхностного слоя, и при использовании наночастиц этого соединения в качестве материала отрицательного электрода наблюдается высокая скорость экстракции/внедрения лития и длительное сохранение емкости при циклировании.

<< первая < пред. 1 2 3 4 след. > последняя >>

Анонсы событий